Corporate Presentation

May 21, 2024

Copyright © BrightPath Biotherapeutics Co., Ltd.

Biotherapeutics

Disclaimer

The material that follows is a presentation of general background information about BrightPath Biotherapeutics Co., Ltd. ("BrightPath") as of the date of this presentation. This material prepared solely for information purpose and is not to be construed as a solicitation or an offer to buy or sell any securities and should not be treated as giving investment advice to recipient.

This material and any material distributed in connection with this presentation may contains forward-looking statements, beliefs or opinions regarding BrightPath's future business, future position and result of operations, including estimates, forecasts, targets and plans for BrightPath. Without limitation, forward-looking statements often include words such as "target", "plans", "believes", "hopes", "continues", "expects", "aims", "intends", "ensures", "will", "may", "should", "would", "could", "anticipate", "estimates", "projects" or similar expressions or the negative thereof. Such forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Such forward-looking statements are based on numerous assumptions regarding our present and future business strategies and the environment in which BrightPath will operate in the future. The important factors that could cause our actual results, performance or achievements to differ materially from those in the forward-looking statements include, among others, risks associated with product discovery and development, uncertainties related to the outcome of clinical trials, slower than expected rates of patient recruitment, unforeseen safety issues resulting from the administration of our products in patients, our relationships with the unenforceability or lack of protection of our protects, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patients and proprietary rights, our relationships with the Tokyo Stock Exchange and the Financial Services Agency of Japan. Although BrightPath believes that the expectations and assumptions reflected in the forward-looking statements are easonably based on information currently available to BrightPath's management, certain forward-looking sta

BrightPath does not undertake to update any of the forward-looking statements contained in this presentation or any other forrard-looking statements it may make, except as required by law or stack exchange rule.

No representation or warranty, either express or implied, by BrightPath is made as to the accuracy, fairness, or completeness of the information presented herein and no reliance should be placed on the accuracy, fairness, or completeness of such information. Various factors may cause actual results to differ materially from those described in this material.

The presentation contains information on drugs currently under development. Nothing contained herein should be considered any solicitation, promotion, advertisement, or medical advice.

The information contained in this material may be changed without prior notice. In addition, BrightPath may alter, modify or otherwise change in any manner the contents of this presentation, in its own discretion without the obligation to notify anu person of such revision or changes. Neither BrightPath nor its sources or informants assume any responsibility or liability for any loss or damage that may be incurred by those who will rely on the information in this document.

This presentation and its contents are proprietary confidential information and may not be reproduced, published or otherwise disseminated in whole or in part without BrightPath's prior written consent. These materials are not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation.

In the event of any inconsistency between the statement in the English-language presentation and the statement in the Japanese-language presentation, the statements in the Japanese-language version should prevail.

BrightPath_ Biotherapeutics

BrightPath Bio (Tokyo Stock Exchange Growth 4594)

- BrightPath Bio is a clinical-stage biopharmaceutical company focused on developing immuno-oncology products
- Three focused modalities: cell therapy, immune modulatory antibody, and cancer vaccine
- BP2202 is a novel platform of allogeneic CAR-T cell therapy using iPS cell-derived NKT cell

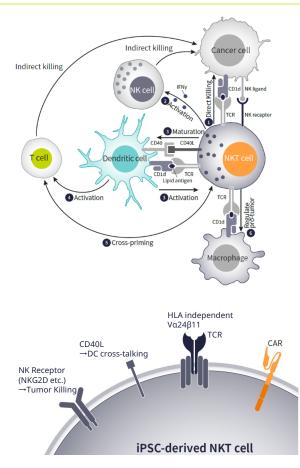
Developed product	Mechanism/target	Cancer type	Discovery	Preclinical	PI	PII
Cell Therapy						
BP2201	iPS cell-derived NKT cells	HNSCC				
BP2202	CAR-iPSNKT (Undisclosed)	Hematologic Malignancy Sarcoma,				
BP2301	HER2 CAR-T	Gynecological Tumors				
Antibody						
BP1200	CD73					
BP1202	CD39					
BP1210	TIM-3					
BP1212	CD39×TIM-3					
Cancer Vaccine						
BP1209	Personalized neoantigen	Solid Tumor				

Cell Therapy

BP2201 (Unmodified iPS-NKT Cell)

FY2023 Highlights

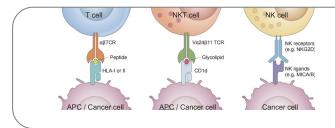
- The first-in-human Phase I study of the iPS cell-derived NKT cells was conducted in patients with r/r HNSCC under the primary endpoint of tolerability and safety
- Some patients at high-dose experienced some level of tendency of tumor shrinkage, which has demonstrated encouraging early clinical activity of the iPS cell-derived NKT cells
- These initial safety and efficacy results of the first-in-human study are encouraging and provide preliminary evidence that using iPS-NKT as effector cells for a novel allogeneic CAR-T platform might be an effective cancer treatment strategy
 - In this study, iPS-NKT cells were administered at a low-dose (3x10⁷cells/m²) and high-dose (1x10⁸cells/m²) in multiple dosing, through the tumor artery as monotherapy without prior lymphodepletion to exert its most distinct feature of priming endogenous anti-tumor T cells.
 - Low-dose (n=3): 1 SD, 2 PD DCR 33.3%
 High-dose (n=6): 4 SD, 1 PD, 1 NE DCR 80% (4 of 5 evaluable patients)
 - The most frequently observed trAEs were Grade 1 or 2 fever (1 patient at low-dose, 4 patients at high-dose)


Source: Professor Shinichiro Motohashi MD, Ph.D, of Chiba University, at CD1-MR1 2024 Conference

BP2202 (CAR-iPSNKT)

A Novel Allogenic CAR-T Platform

- Invariant natural killer T (iNKT) cell is a rare subset of T lymphocytes that has not only direct but indirect anti-tumor activity by priming CD8+ T cells and other immune cells
- Allogeneic CAR-transduced iPSC-derived iNKT cells retain the naïve iNKT's function of inducing host CD8⁺ T cells
 - The enhanced fitness and the spread antigens of the induced host CD8⁺ T cell are expected to prolong the durability of clinical response
- Induced pluripotent stem (iPS) cell technology enables clinical-scale manufacturing of iNKT cells that preserve those functions
- Fully IP protected and worldwide license assigned in US/EP/JP until 2031
 - Exclusive right to use iPS-NKT / CAR iPS-NKT cells; the most desirable methodology for clinical-scale manufacturing of functional NKT cells from a rare subset of lymphocytes

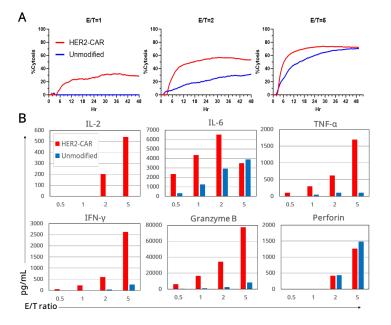


BP2202 (CAR-iPSNKT) (cont'd)

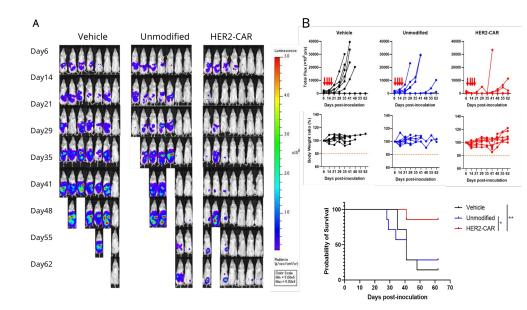
iNKT cells induce host endogenous CD8⁺T with memory phenotype, which is expected to provide durability of clinical responses

	allo NK	CT alo αβT	allo γδΤ	allo NK	
Innate - adaptive immunity bridging					
DC cross-talking	\checkmark	Possible source of	f		
CD8 ⁺ T cross-priming	\checkmark	durability			
Myeloid cell (TAM, MDSC) reprogram ¹	\checkmark				
Innate anti-tumor response	\checkmark		\checkmark	\checkmark	
HLA independency					
No need to TCR gene editing ²	\checkmark		\checkmark	n.a.	
Low GvHD risk	\checkmark		\checkmark	\checkmark	 iNKT cells kill tumor-associated macrophage / myeloid-derived suppressive cell thorough TCR/CD1d.
Proliferating capacity	\checkmark	\checkmark	\checkmark		 TCR gene editing is not necessary to avoid the risk of GvHD. Thus, proliferative capacity is no dampened

BrightPath


- NKT cell is a rare subset of innate lymphocytes representing less than 1% of the total lymphocyte
 - Rationale to use iPSC as cell source for clinical scale manufacturing of functional iNKT cells
- Express a semi-invariant TCR recognizing glycolipids presented by the monomorphic MHC like molecule CD1d
 - > HLA independency provides low GvHD risk

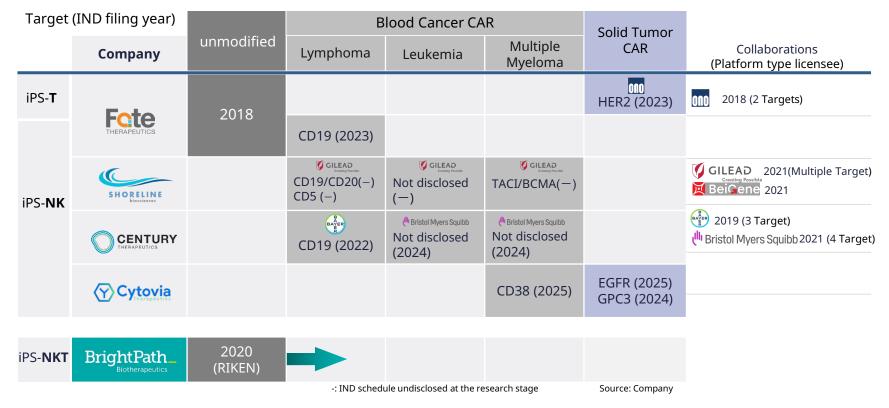
6


BP2202 (CAR-iPSNKT) (cont'd)

Prototype HER2-CAR iNKT cells showed target-specific anti tumor effects

• Cytotoxic activity (A) and Cytokine secretion (B) (HER-2 expressing tumor cell line SK-OV-3)

• Tumor burden of SK-OV-3-luc bearing mice (A), Spider plot of total flux and body weight ratio (B) and Survival rate (C)

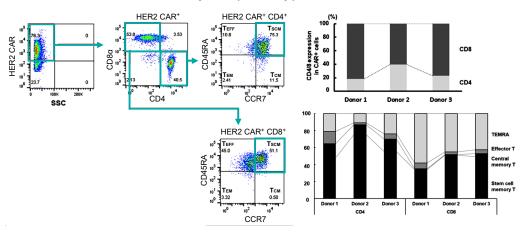


BrightPath SITC2022

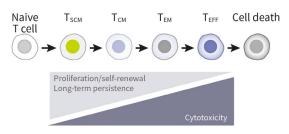
BrightPath SITC2023

BP2202 (CAR-iPSNKT) (cont'd)

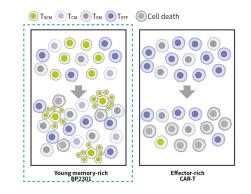
Landscape of iPS-NK/NKT platform company



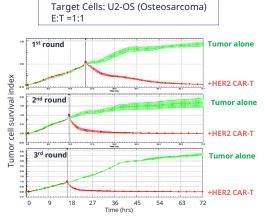
BP2301 (HER2 CAR-T)


Autologous, non-virally CAR transduced, HER2-targeting CAR-T cells

- Stem cell memory-like T (T_{SCM}) phenotype-rich CAR-T cells, mediated by the non-viral piggyBac transposon system for CAR transduction
- T_{SCM} effector exhibiting continuous proliferation capacity and self-renewal ability, and long-lived in vivo
- Able to overcome T cell exhaustion in an immunosuppressive solid tumor microenvironment, leading to durable clinical responses


• BP2301 exhibited memory-like phenotype

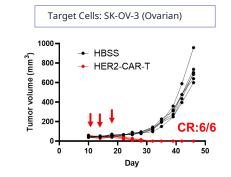
• T cell differentiation and phenotypes


• Persistence of memory-rich CAR-T cells

BP2301 (HER2 CAR-T) (cont'd)

■ PiggyBac-mediated, Tscm-rich BP2301 demonstrated potent and sustained killing activity

• BP2301 showed persistent cytotoxicity against HER2+ sarcoma in a serial killing assay Data



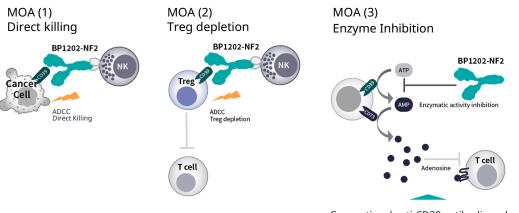
Phase 1 clinical trial ongoing

• 3 + 3 Dose-escalation Design (n=12)

• BP2301 eradicated inoculated tumor in an ovarian cancer xenograft model

- Primary objective: Safety and tolerability
- Secondary objective: Expansion and persistence of BP2301, efficacy
- Lymphodepletion: 3-day regimen FLU 25 mg/m² + Cy 250 mg/m²

Antibody Pipelines

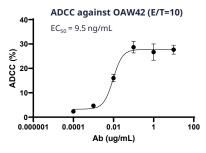


BP1202 (anti-CD39 Antibody)

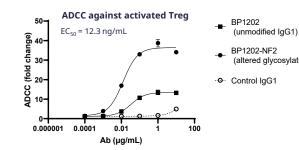
A Novel Strategy on Targeting CD39

Rediscovery of CD39 as a target for depleting cancer cells and Tregs, while avoiding adenosine generation in the tumor microenvironment

- The conventional strategy to inhibit adenosine generation hasn't yielded promising results thus far
- We revisited CD39 expression by cancer cells themselves and Tregs within TME and proposed the CD39 targeting strategy that emphasizes the depletion of these cells rather than the inhibition of its enzyme activities

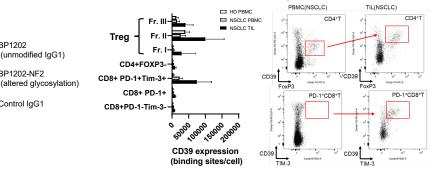

Conventional anti-CD39 antibodies rely solely on prevention of enzymatic activity

- BP1202-NF2, a glycoengineered anti-CD39 antibody, depletes CD39 expressing cancer cells and promotes immune response by CD39high Treg depletion and CD39 enzymatic activity blockade
- CD39 catalyzes the production of immunosuppressive and CD39 expression is elevated on tumor-infiltrating Tregs, whereas it is expressed broadly but moderately or slightly expressed by other tumorassociated immune cells
- BP1202-NF2 selectively depletes CD39high T cells and blockades CD39 enzymatic activity of CD39int/low immune cells in tumor


BP1202 (anti-CD39 Antibody)(cont'd)

Direct Killing

 BP1202-NF2, of which glycosylation is optimized by CD39 density, affinity to CD39, and affinity against FcγRIIIa, showed potent killing of CD39+ cancer cell line in ADCC assay



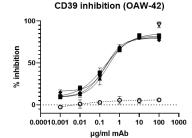
• BP1202-NF2 demonstrated high ADCC activity against Treg

• CD39 expression was elevated on tumor-infiltrating Tregs and exhausted CD8⁺T cells in NSCLC patients

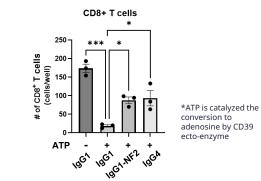
Treg depletion

Ecto-enzyme inhibition

BP1202


BP1202-NF1

BP1202-NF2

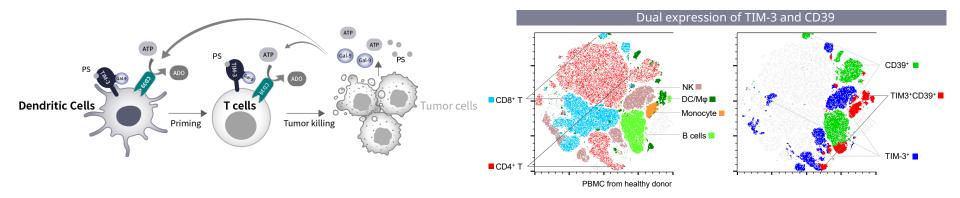

BP1202-NF3

-⊕ Control IgG

 Maximum blockade of membraneassociated CD39 is 80% at 10µg/mL, which is compar-able to IPH5201's 70% (industry high)

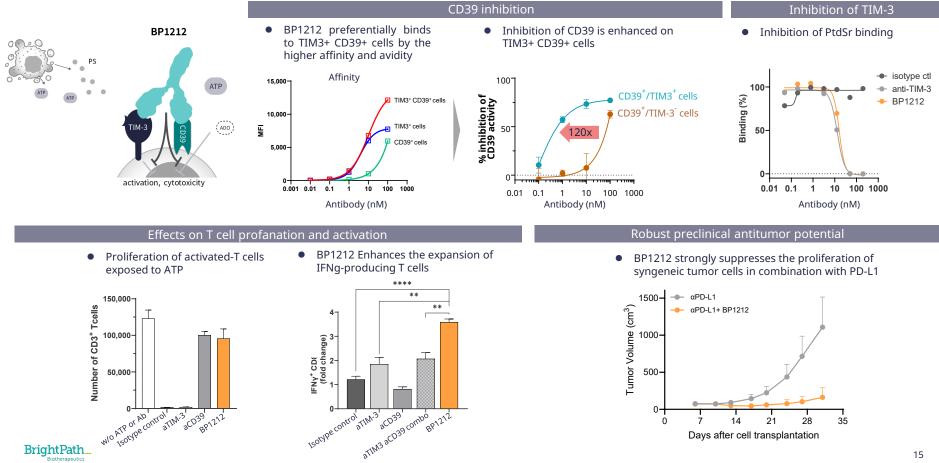
 BP1202-NF2 released the adenosine-inducing immunosuppression of CD8⁺ T cells

- BP1202 (unmodified IgG1) and BP1202-NF2 (altered glycosylation) show high affinity for recombinant human CD39 (KD(M) x10⁻¹⁰) and Tregs(x10⁻⁹)
- BP1202-NF2 selectively depleted CD39hi population of CD4⁺ T cells and CD8⁺ T cells in ex vivo cultured human PBMCs



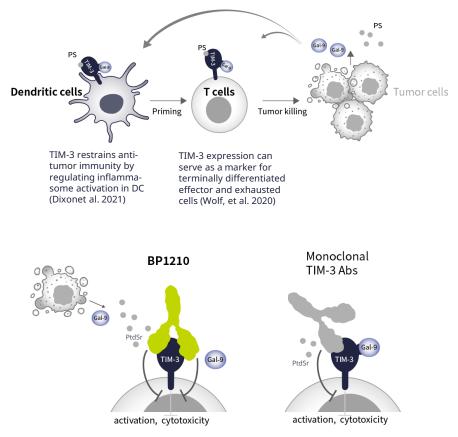
BP1212 (anti-CD39 x anti-TIM3 Bispecific Antibody)

First-in-class Dual Blockade of CD39 and TIM-3


Blockade of redefined immune checkpoints where it's meant to function by targeting two pathways

- CD39 is well known as an intervening enzyme for adenosine generation and Tim-3 is recognized as a T-cell exhaustion marker. However, the strategy to inhibit those functions hasn't been performing as well as expected.
- We redefined CD39 and Tim-3 as a new immune checkpoint different from conventional understanding by combinatory targeting two pathways.
- TIM-3 and CD39 are co-expressed by not only exhausted T cells but DC/myeloid cells that we shed light on.
- The co-expression of TIM-3 and CD39 on dendritic cells induces tolerization through distinct pathways, working synergistically to suppress the activation of innate immunity and disturbing the bridge to adaptive immunity.

BP1212 (anti-CD39 x anti-TIM3 Bispecific Antibody) (cont'd)


Biotherapeutics

BP1210 (anti-TIM3 Antibody)

A Novel TIM-3 Targeting Strategy: Blocking the Binding of All Ligands

- Increasing expression of Tim-3 and Galectin-9, one of the four known ligands of Tim-3, are reported to relevant to poor prognosis cancers such as pancreatic carcinoma, glioma, cervical carcinoma, lymphoma and leukemia.
- We hypothesize that Gal-9 plays a pivotal role in facilitating immune suppression within tumors by binding to Tim-3 on the surface of dendritic cells. This binding inhibits dendritic cell maturation, thereby impeding the mediation of T cell immunity.
- Conventional anti-Tim-3 antibodies are not able to inhibit Gal-9 binding effectively, which impede Tim-3 antagonist to exert full potential of T cell anti-tumor activities.
- The limitation is derived from two distinct epitope bins of Tim-3, one of Gal-9 and the other of other three ligands such as PtdSr.
- BrightPath overcome the hurdle by bringing a biparatopic antibody that inhibits both epitope bin bindings.


BP1210 (anti-TIM3 Antibody) (cont'd)

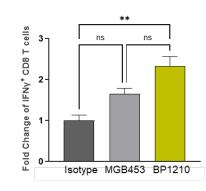
A novel humanized, IgG1-Fc silent biparatopic antibody

• BP1210 binds to two distinct TIM-3 epitopes: one is the same domain as sabatolimab (Novartis) and all other Abs advanced in clinical development, and the other is the one that enables full interference with Gal-9 binding and that those monoclonal Abs do not reach

Binging Affinity Enhancement

 Biparatopic antibody BP1210's affinity is enhanced to KD(M) of x10⁻¹⁰ in a combination of Clone A of x10⁻⁹ and Clone B of x10⁻⁷

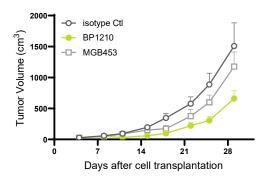
hTIM-3 IgV domain


Inhibition of the ligand-binding

 Inhibition of Gal-9 binding

BrightPath

• Inhibition of PtdSr binding


100 100-• 🖷 Binding (%) Binding (%) Isotype BP1210 50-50-MGB453 0.01 0.1 10 100 0.01 0.1 1 10 1001000 1 Ab (nM) Ab (nM)

Enhanced IFNy-producing T cells

Robust Anti-tumor effect

• Head-to-head monotherapy comparison (MC-38 mouse model)

BP1200 (anti-CD73 Antibody)

Novel anti-CD73 antibody taking standard strategy of adenosine generation blockade with a bestin-class profile

BP1200 Internalization

Tumor cells

- MEDI9443

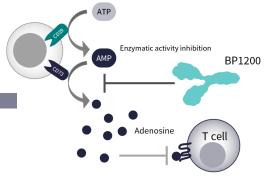
10 20 30 40 50

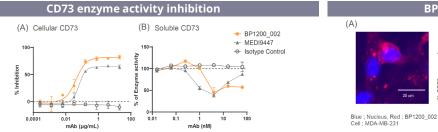
Incubation (hr)

(C) Human T cells

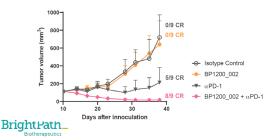
30 120 240

Incubation (min)

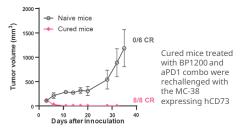

BP1200 002


MEDI9447

(B)


- Attenuates the activity of CD73 as a non-competitive inhibitor without hook effect
- Enhances the proliferation, cytotoxicity, and cytokine production of T cells under the TME condition
- The combination with immune checkpoint antibodies significantly suppressed tumor growth and lead long term immunotherapeutic efficacy
- Good PK/TK profiles without remarkable organ toxicity in mice and monkeys

Enzyme inhibition



Combination therapy of BP1200 with ICB

Tumor-Rechallenge model

Pharmacokinetics and Toxicokinetics

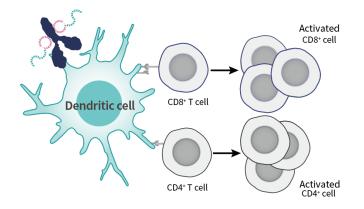
Table 1. Pharmacokinetics of single intraperitoneal dose of BP1200 in female C57BL/6 mice

Dose	Cmax	AUC _{0→∞}	CI	Vss	t _{1/2}	MRT _{0→∞}
mg/kg	µg/mL	hr×mg/mL	mL/hr/kg	mL/kg	hr	hr
10	91±15	24±2	0.41±0.03	119±12	201±27	290±39

Table 2.Toxicokinetics of single or multiple intravenous dose of BP1200 in female cynomolgus monkeys

Dose	Route	Day	Cmax	AUC _{0→∞}	CL	Vss	t _{1/2}	$MRT_{0\to\infty}$
mg/kg			µg/mL	µg ∙ hr/mL	mL/hr/kg	mL/kg	hr	hr
5	iv. a1w	1	149	6900	0.7	52.8	51.2	73.9
5	iv, q1w	22	122	4600	2.6	173.3	42.9	61.9
25	iv, q1w	1	598	22200	1.1	68.4	41.9	60.4
25	iv, q1w	22	808	35700	0.7	57.6	57.7	83.2

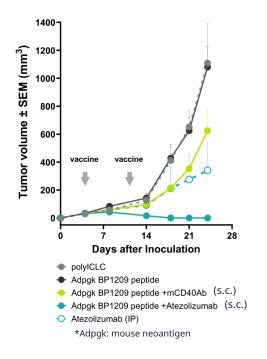
Cancer Vaccine Pipeline

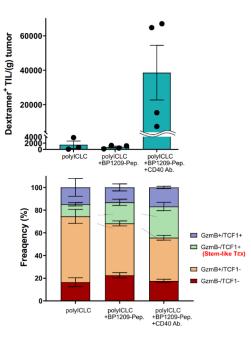


BP1209 (Fully Personalized Neoantigen Vaccine)

A new platform of personalized neoantigen cancer vaccines directed by checkpoint inhibitor antibodies

- The BP1209 vaccine is delivered as a molecular complex of patient-specific neoantigen peptides and immune-checkpoint inhibitor antibody such as anti-PD-L1 and anti-CD40 antibodies.
- The neoantigen peptides consists of three modules: HLA-class I and -class II neoantigen epitopes, and an IgG-binding motif. The peptides non-covalently bind Fc domain of IgG, and self-assemble the antibody-vaccine complex without any chemical reaction which enables individual synthesis and manufacturing fully personalized neoantigen vaccine




- BrightPath has developed in-house bioinformatic algorithms to identify highly immunogenic neoantigens from cancer patients and analyzed clinical samples from over 100 patients
- The new vaccine platform of BP1209 in combination with BrightPath's algorism to identify high quality neoantigens provides an ideal option to improve neoantigen vaccine therapy

BP1209 (Fully Personalized Neoantigen Vaccine) (cont'd)

- BP1209 exerted robust anti-tumor effect in therapeutic setting
 - Atezolizumab conjugated BP1209 vaccine maintained complete tumor regression in all the mice until study end (n=9).

- BP1209 strongly enhances stem-like Tex infiltration into tumor
 - Mice treated with the BP1209 vaccine marked increase in neoantigen specific TIL
 - The BP1209 vaccine increased TCF1+/ Granzyme Bstem-like Tex

Company Profile

Company Profile

BrightPath Biotherapeutics Co., Ltd. (Tokyo Stock Exchange Growth: 4594)

Business	Development of novel cancer immunotherapy			
Foundation	May 2003			
Listing	November 2015			
Employees	24 (as of March 2024)			
Location	Headquarters:	2-2-4 Kojimachi, Chiyoda-ku, Tokyo		
Location	Research Laboratories:	3-25-22 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa		

Board Member

Kenichi Nagai	CEO		
Norihiro Nakamura	CSO	Genentech	Н
Yoichi Takeshita	CFO	esk amazon	Bu Ko To
Akira Yamada	Director (part-time)	えな留米大学 (Present)	Ka
Hirotaka Takeuchi	Director (outside, independent)	HARVARD BUSINESS SCHOOL	Ce
Tsutomu Kishino	Auditor (outside)	DBJ Development Bank of Japan	Ka
Taketoshi Abe	Auditor (outside, independent)	🔾 Daiichi-Sankyo	Haneda Airport
Yoshiyasu Yamaguchi	Auditor (outside)	TMI Associates	Degen 20 Store

Kawasaki Research Laboratories: Cell Technology Laboratories: Life Innovation Center, 3-25-22 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan

Biotherapeutics