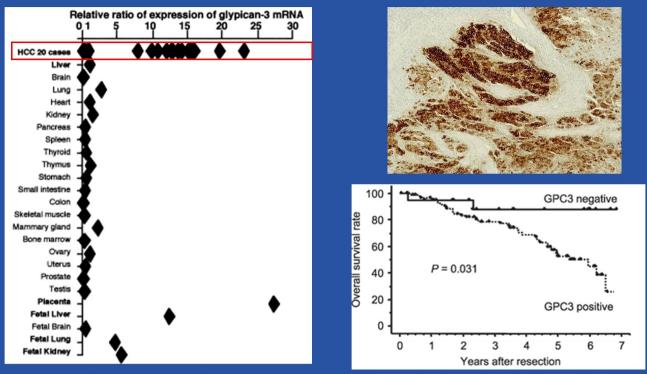
Peptide-Based Individualized Vaccines

Tetsuya Nakatsura
Division of Cancer Immunotherapy,
Exploratory Oncology Research & Clinical Trial Center,
National Cancer Center, Japan


PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

presented ву: Tetsuya Nakatsura

Glypican-3 (GPC3), a carcinoembryonic antigen, is an ideal target of anticancer immunotherapy against hepatocellular carcinoma(HCC)

Nakatsura T et al, Biochem Biophys Res Commun. 2003 Shirakawa H et al, Cancer Sci. 2009 GPC3 is overexpressed specifically in HCC and correlates to a poor prognosis.

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

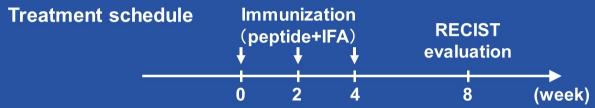
Outline of mechanism of action of peptide vaccine therapy Peptide is injected intradermally or subcutaneously ≪Skin≫ **Peptide** ≪Lymph nodes≫ Antigen presenting cells (Langerhans cells) ≪ Whole body organization ≫ Cytotoxic 7 **Normal** ≪Blood vessel≫ lymphocytes cells Cancer cell

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

Peptide.


PRESENTED BY: Tetsuya Nakatsura

Phase I trial of GPC3 peptide vaccine for advanced HCC

Glypican-3 (GPC3) peptide vaccine		Peptide dose	No. of cases
		0.3 mg	8
HLA-A2 GPC3 ₁₄₄ -		1.0 mg	6
HLA-A24 GPC3 ₂₉₈₋₅	306 (EYILSLEEL)	3.0 mg	6
		10.0 mg	7
		30.0 mg	6
		Total	33

Sawada Y. et al Clin. Cancer Res. 2012, Yoshikawa T. et al Cancer Sci. 2011

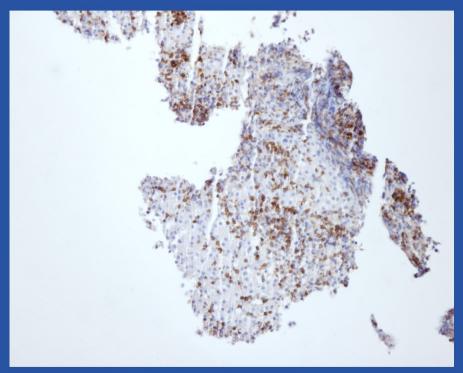

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

75y F multiple HCC, bone meta, lung meta, LN meta HLA-A*0207/1101 HLA-A2-restricted glypican-3 peptide: 30 mg per body, 3 times vaccination


PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

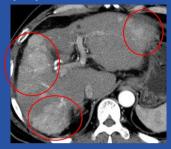
PRESENTED BY: Tetsuya Nakatsura

Infiltration of a large amount of CD8-positive killer T cells was proved in tumors that did not change in post-vaccine

Sawada Y. et al Clin. Cancer Res. 2012

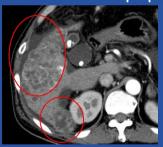
PRESENTED AT:

ASCO Breakthrough


#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

A case experienced in clinical trials for advanced cancer


Before administration of GPC3 peptide vaccine

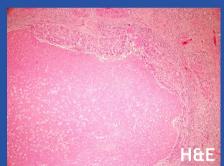
After 2 doses of GPC3 peptide vaccine

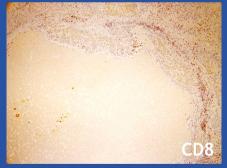
Sawada Y et al. Hum Vaccin Immunother. 2013:1228-33

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19


PRESENTED BY: Tetsuya Nakatsura


Slides are the property of the authorized for reuse

A case experienced in clinical trials for advanced cancer

Most of the tumor necroses macroscopically

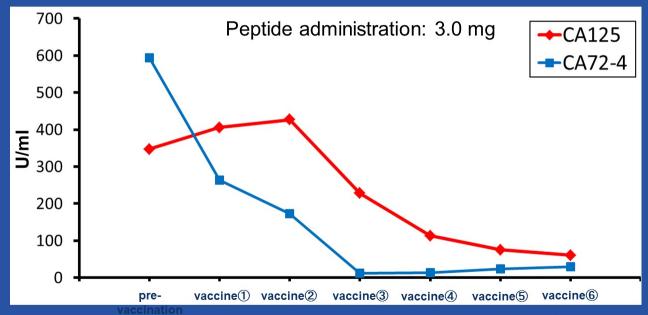
The majority of intrahepatic tumors are central necrosis. Viable tumor remains at the periphery. CD8 positive lymphocytes observed nearby viable cancer cells.

Sawada Y et al. Hum Vaccin Immunother. 2013:1228-33

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19


PRESENTED BY: Tetsuya Nakatsura

Ovarian clear cell carcinoma patient Received Glypican-3 derived peptide vaccine (HLA-A24)

Patients gloup : advanced 42 YO、stage III c previous treatment :

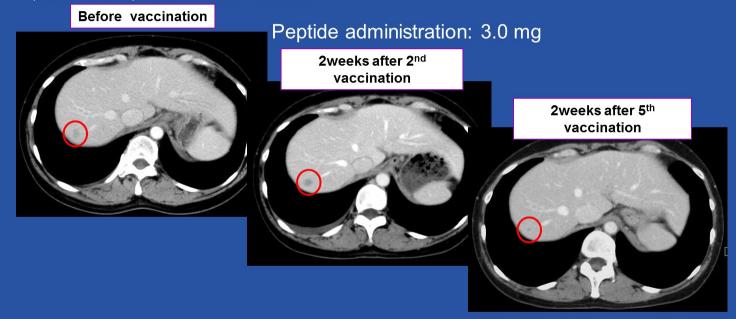
HLA-A * 24:02, 31:01

operation (ATH+BSO+sampling of retroperitoneal lymph node、residual tumor+) \rightarrow TC treatment \rightarrow IDS (PEN+PAN+OM) \rightarrow CPT-T+CDDP treatment

Suzuki S et al. Hum Vaccin Immunother. 2014:338-43

PRESENTED AT: ASCO Breakthrough

#ASCOBT19


PRESENTED BY: Tetsuya Nakatsura

Ovarian clear cell carcinoma patient Received Glypican-3 derived peptide vaccine (HLA-A24)

Patients gloup : advanced 42 YO、stage III c previous treatment :

HLA-A * 24:02, 31:01

operation (ATH+BSO+sampling of retroperitoneal lymph node、residual tumor+) \rightarrow TC treatment \rightarrow IDS (PEN+PAN+OM) \rightarrow CPT-T+CDDP treatment

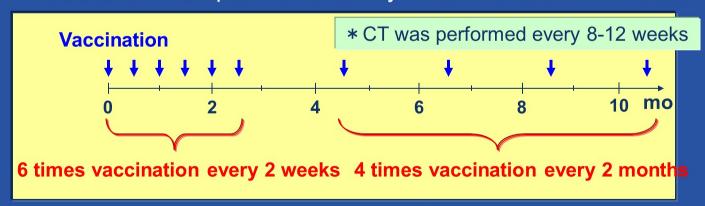
Suzuki S et al. Hum Vaccin Immunother. 2014:338-43

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura


phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for HCC patients

3.0mg of GPC3 peptide emulsified with IFA (intradermally)

EYILSLEEL peptide for HLA-A24-positive patients FVGEFFTDV peptide for HLA-A2-positive patients

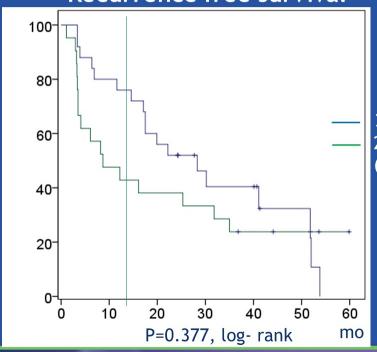
10 vaccinations are performed for 1 year after curative treatment.

Sawada Y. et al

Oncolmmunology 2016

PRESENTED AT:

ASCO Breakthrough


#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

It is expected to recurrence-prevention effect of GPC3 peptide vaccine in GPC3-positive HCC

1-year recurrence rate 24.0% vs 52.4% (p=0.047)

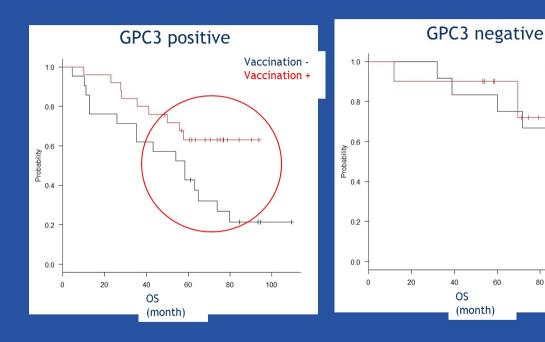
Recurrence free survival

HCC tumor of all these patients showed evident GPC3 expression in immunohistochemical examination

25 patients treated with surgery and the vaccination 21 patients underwent surgery alone in NCCE (control)

Sawada Y. et al

Oncolmmunology 2016

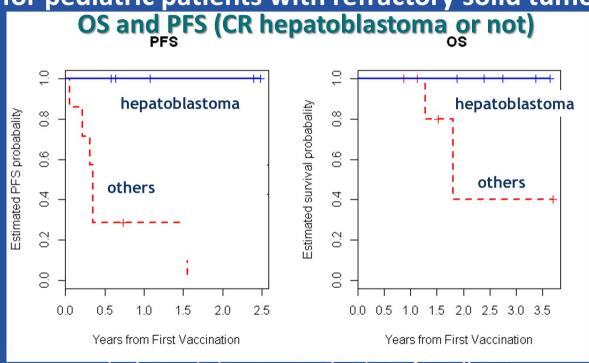

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Overall Survival


ASCO Breakthrough PRESENTED BY: Tetsuya Nakatsura PRESENTED AT: **#ASCOBT19**

Vaccination -Vaccination +

80

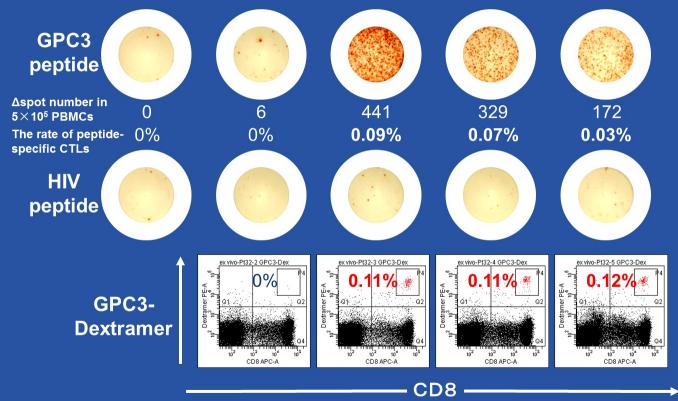
100

Phase I study of Glypican-3-derived Peptide Vaccine Therapy for pediatric patients with refractory solid tumors

In the remission group at the time of enrollment, all cases of hepatoblastoma remained remission and survival

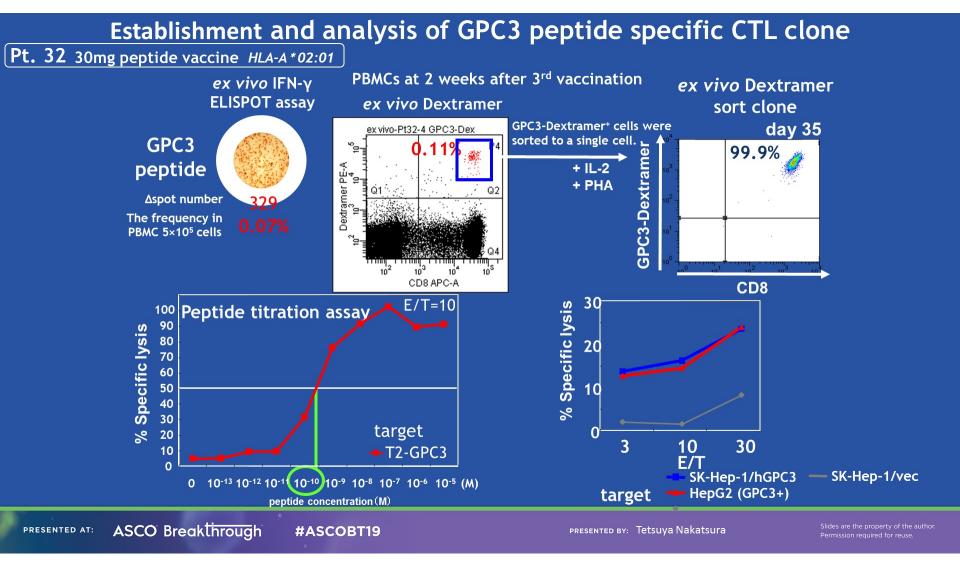
PRESENTED AT:

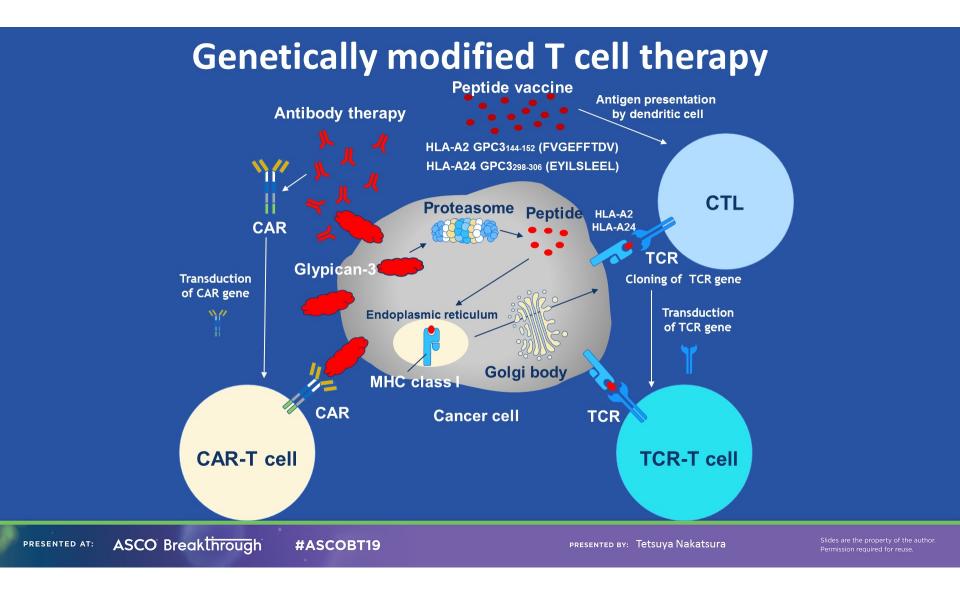
ASCO Breakthrough


#ASCOBT19

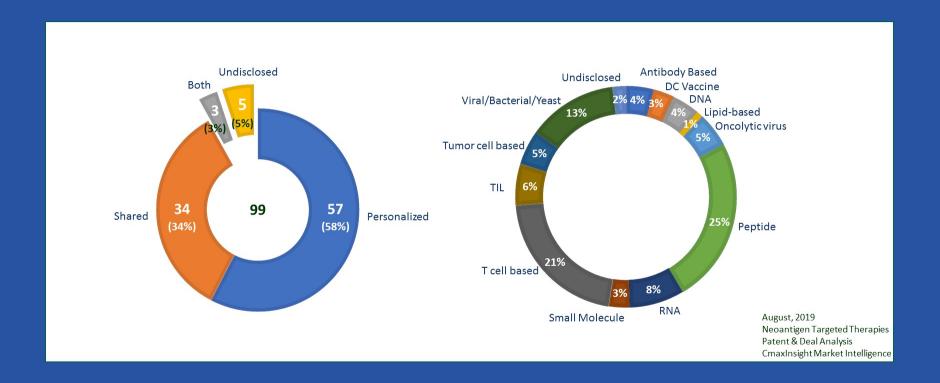
PRESENTED BY: Tetsuya Nakatsura

Pt. 32 30mg HLA-A * 0201


Pre- 2 weeks after 2 weeks after 2 weeks after 1 month after vaccination 1st vaccination 2nd vaccination 3rd vaccination



PRESENTED AT: ASCO Breakthrough


#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Immunotherapies targeting neoantigens under development

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Clinical Studies for Personalized Immuno-oncology Therapies

Sponsor	Region	Target Cancer	Vaccine Platoform	Enrollment	Start Date (Status)	NCTNumber
University of Pennsylvania	USA	Melanoma	Peptide-treated DC	17	Aug 2008 (Completed)	NCT00683670
Dana-Farber Cancer Institute	USA	Melanoma	Peptide, poly-ICLC	20	Jan 2014 (Enrollemnt completed)	NCT01970358
Dana-Farber Cancer Institute	USA	Glioblastoma	Peptide, poly-ICLC, Radiotherapy	20	Nov 2014 (Enrollemnt completed)	NCT02287428
Dana-Farber Cancer Institute Oncovir, Inc. Neon Therapeutics, Inc.	USA	Chronic Lymphocytic Leukemia	Peptide, poly-ICLC, Cyclophosphamide	10	Sep 2018 (Enrollment not to start)	NCT03219450
Dana-Farber Cancer Institute	USA	Follicular Lymphoma	Peptide, poly-ICLC	20	Jul 2018 (Enrollment not to start)	NCT03361852
Dana-Farber Cancer Institute Bristol-Myere Squibb	USA	Renal Cell Carcinoma	Peptide, poly-ICLC, Ipilimumab	20	Oct 2016 (Enrollment not to start)	NCT02950766
Neon Therapeutics, Bristol-Myere Squibb	USA	Lung, Melanoma, Bladder	Peptide, poly-ICLC, Nivolumab	90	Oct 2016	NCT02897765
Washington University	USA	Breast(TN)	Polyepitope DNA	15	Jun 2015	NCT02348320
Washington University	USA	Pancreatic	Polyepitope DNA, electroporation	15	Jan 2018	NCT03122106
Washington University MedImmune LLC	USA	Breast (TN)	Polyepitope DNA, electroporation	24	Apr 2018	NCT03199040
Investigator ii	nitiat	CEE st (N)	imical trials	15	Sep 2015 (Suspended)	NCT02427581
Washington University	USA	Glioblastoma	Peptide, poly-ICLC	10	Nov 2015 (Completed)	NCT02510950
Washington University	USA	Pediatric Brain Tumor	Peptide, poly-ICLC	10	May 2018 (Enrollment not to start)	NCT03068832
Washington University	USA	Follicular Lymphoma	Peptide, poly-ICLC, Nivolumab	20	Jun 2018 (Enrollment not to start)	NCT03121677
Washington University	USA	NSCLC	Peptide, poly-ICLC, Pembrolizumab	0	May 2018 (Discontinued)	NCT03166254
Washington University	USA	Glioblastoma	Peptide, poly-ICLC, ilimumab, Nivolumab	30	Jun 2018 (Enrollment not to start)	NCT03422094
Icahn School of Medicine at Mount Sinai	USA	Solid Tumor	Peptide, poly-ICLC	20	Apr 2016	NCT02721043
Icahn School of Medicine at Mount Sinai NovoCure Ltd.	USA	Glioblastoma	Peptide, poly-ICLC, Tumor Treating Fields (TTF)	3	Mat 2018 (Enrollment not to start)	NCT03223103
Icahn School of Medicine at Mount Sinai Genentech, Inc.	USA	Urothelial Carcinoma, Bladder	Peptide, poly-ICLC, Atezolizumab	15	Jul 2018 (Enrollment not to start)	NCT03359239
M.D. Anderson Cancer Center	USA	Pancreatic, Colorectal	Peptide, IFA	40	May 2016	NCT02600949

PRESENTED AT:

ASCO Breakthrough

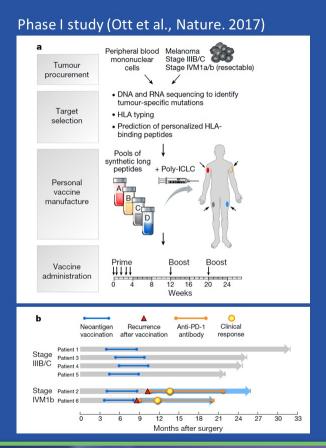
#ASCOBT19

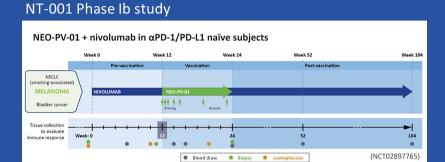
PRESENTED BY: Tetsuya Nakatsura

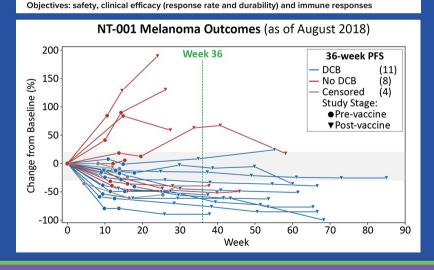
Clinical Studies for Personalized Immuno-oncology Therapies

Drug name	Developer	Format	Stage	Indications
NEO-PV-01	Neon Therapeutics	Peptide	Phase Ib	Melanoma, NSCLC, bladder
GEN-009	Genocea Biosciences	Peptide	Phase I/II	melanoma, NSCLC, SCCHN, Urothelial, renal
iNeo-Vac-P01	Hangzhou Neoantigen	Peptide	Phase I	Pancreatic, solid tumors
AGEN2003, AGEN2017	Agenus	HSP70 peptide	Phase I	Solid tumors
IVAC MUTANOME	BioNTech	mRNA	Phase I, phase II	Melanoma, TNBC, solid tumor
mRNA-4157, NCI-4650	Moderna Therapeutics	mRNA	Phase I	NSCLC, CRC, pancreatic
mRNA vaccine	Stemirna Therapeutics	mRNA	Phase I	Esophageal, NSCLC, Gastric, Pancreatic, CRC
VB10.NEO	Vaccibody	DNA	Phase I/II	Melanoma, NSCLC, bladder, renal, H&N
GNOS-PV01	Geneos Therapeutics	DNA	Phase I	GBM
GRANITE-001	Gritstone Oncology	Viral	Phase I/II	NSCLC, CRC, gastroesophageal, bladder
TG4050	Transgene	Viral	Phase I	Ovarian, H&N
RP1	Replimune	Oncolytic virus	Phase II	Melanoma, skin, bladder
Ruxotemitide	Lytix Biopharma	Ondolytic virus	Phase II	Melanoma, TNBC, breast, H&N, Lymphoma
Many Sp	Add balled	Radterial Cd	Phase Id 15	CRC
ADXS-NEO	Advaxis	Bacterial	Phase I	NSCLC, CRC, H&N, melanoma, bladder
YE-NEO-001	NantBioScience	Yeast-based	Phase I	RC, Breast, Melanoma, Pancreatic, Liver, SCCH
Neoantigen Vaccines	Likang Life Sciences	DC	Phase I	нсс
MDG 1011	Medigene	T cell-based	Phase I/II	AML, MDS, MM
NeoTCR-P1	PACT Pharma	T cell based	Phase Ia/Ib	Solid tumors
PACTN	PersImmune	T cell based	Phase I	Myelodysplastic Syndromes
IMA-101	Immatics	T cell based	Phase I	Solid tumors
IMA-201, IMA-202, IMA-203	Immatics	TCR-T	Phase I	Solid Tumors
TCR Sleeping Beauty	Ziopharm Oncology	TCR-T	Phase I	Solid tumors
Lifileucel, LN-145	Iovance Biotherapeutics	TIL based	Phase II	melanoma, solid tumors
	Achilles Therapeutics	TIL based	Phase I/II	NSCLC, melanoma

PRESENTED AT:

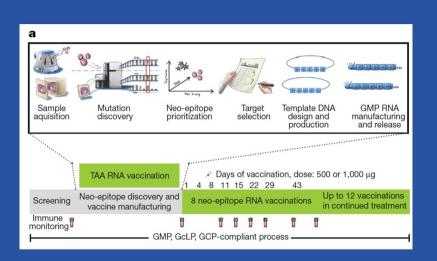

ASCO Breakthrough

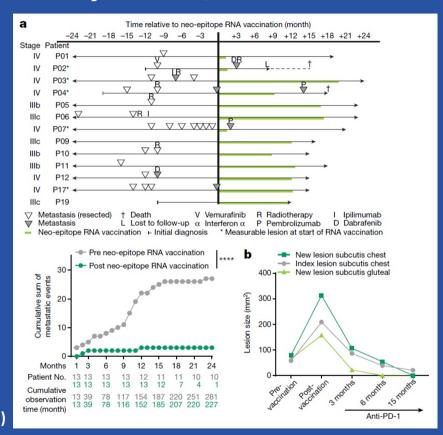

#ASCOBT19


PRESENTED BY: Tetsuya Nakatsura

Slides are the property of the authorized for reuse

Personalized neoantigen peptide vaccine trial at DFCI and Neon Therapeutics




PRESENTED AT: ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Personalized RNA vaccine trial by TRON/BioNTech

Sahin et al., Nature (2017)

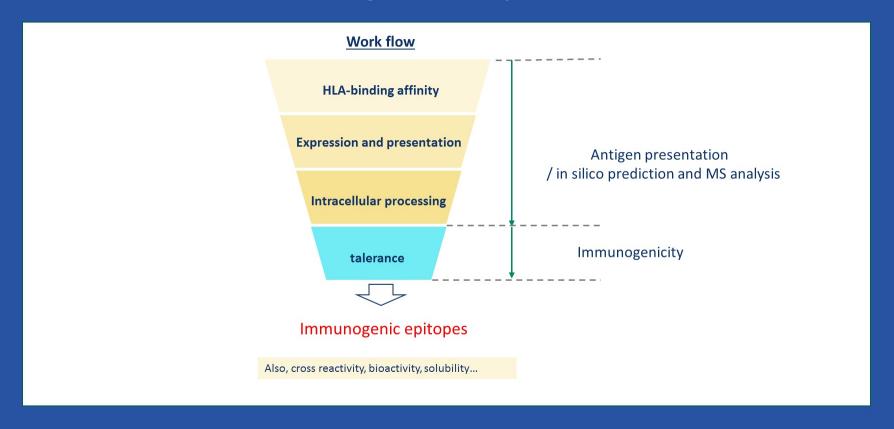
PRESENTED AT: ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuva Nakatsura

Peptide vaccine development

	Short Peptides / IFA	Long Peptides / PolyIC:LC
Pros	 Potentially earlier IND Potentially less development cost No one developing short peptides as a personalized cancer vaccine (Originality) 	 Activation of CD4⁺ T Cells as well as CD8⁺ T Cells Precede studies with long peptides showing promising efficacy
Cons	 Need to identify (predict) very peptide sequences to exactly bind MCH Class I Activation of only CD8⁺ T Cells (CD4⁺ T Cells) in which less efficacy might be available 	 Potentially higher development cost To use new adjuvant (not approved yet) -> To require some additional Tox studies

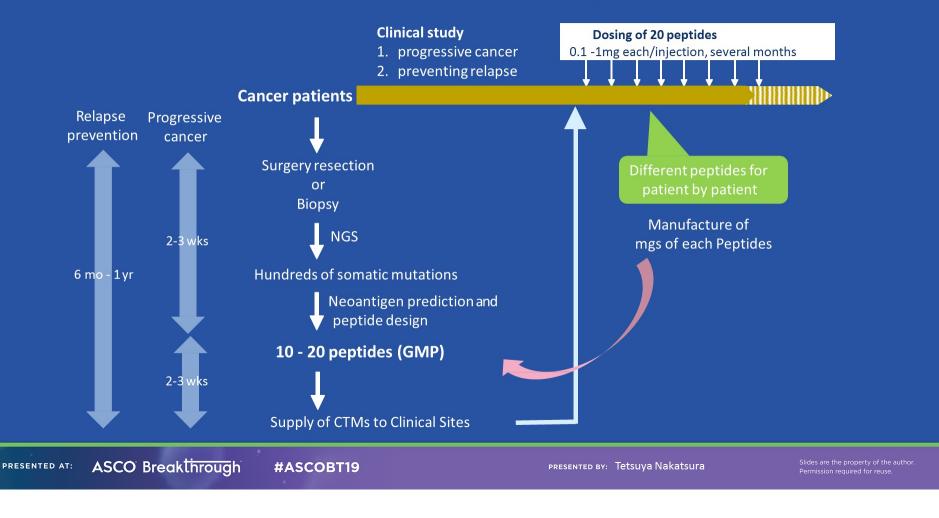

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

ркезентер ву: Tetsuya Nakatsura

Identification of neoantigens from patients


PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Personalized Peptide Vaccines from Identification of Neoantigens to their Dosing to Patients

Conclusions/Take-Away

- Immunotherapies targeting neoantigens were developed.
- Many Clinical Studies for Personalized Immuno-oncology Therapies is ongoing.
- We are also planning a clinical trial of peptide-based individualized vaccines in cooperation with Japanese company.

PRESENTED AT:

ASCO Breakthrough

#ASCOBT19

PRESENTED BY: Tetsuya Nakatsura

Slides are the property of the auth
Permission required for reuse.